Revision History

<table>
<thead>
<tr>
<th>REVISION</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Baseline Revision Last Updated</td>
<td>03/06/2017</td>
</tr>
</tbody>
</table>
| Rev. A | 1. Section 1.1 revised to reflect completed transition to SA Cup
2. Section 1.3 revised to allow for minor, mid-cycle updates
3. Section 1.4 revised to reflect administrative form changes
 a. Separate, paper ESRA and NMSA waiver forms replaced by a single, digital form
 b. Individual PII release form deleted
4. Section 2.0 revised for clarity
5. Section 2.1 reorganized for clarity
6. Section 2.2 (formerly Section 2.3) reorganized and revised – most notably to reflect ESRA and SDL’s official stance on the spirit and intent of encouraging mature payload interfaces via the CubeSat standard
 a. Section 2.2.1 (formerly Section 2.3.1) amended with clarification of allowable deviation in payload weight due to calibration differences measurement devices
 b. Section 2.2.2 (formerly section 2.3.2) revised to clarify differences between payload(s) and commonly confused launch vehicle subsystems
 c. Section 2.2.3 (formerly Section 2.3.4) revised to eliminate option for in-situ weight addition, in favor of a point penalty
 d. Section 2.2.5 (formerly Section 2.3.5) revised for clarity and to distinguish between functional payloads (not necessarily required to meet CubeSat form factor) and non-functional payloads (required to meet CubeSat form factor).
7. Section 2.6.2.10 (formerly Section 2.7.2.10 amended to include additional requirement that hybrid and liquid propulsion system teams included processes and procedures for cleaning
8. Section 2.6.3 (formerly Section 2.7.3) amended to include additional requirement for prominent Team ID# marking on Poster Session materials.
9. Section 2.6.4 (formerly Section 2.7.4) amended to include still more ideas for podium session topics
10. Section 2.6.5.2 added to request insurance information from schools
11. Section 2.6.5.3 (formerly Section 2.7.5.2) revised to define single, paperless NMSA and ESRA waiver and release of liability form
12. Former Section 2.7.5.3: [paper] ESRA waiver form deleted
13. Former Section 2.7.5.4: [paper] NMSA waiver form deleted
14. Section 2.7.1 (formerly Section 2.8.1) revised to clarify Place Awards eligibility within half the category target altitude | 11/12/2017 |
15. Section 2.7.1.1 (formerly Section 2.8.1.1) revised to adjust value to 60 pts (formerly 100 pts)
16. Section 2.7.1.2 (formerly Section 2.8.1.2) revised to permit revision of a project’s “analysis” score based on competition officials’ team interactions at the SA Cup, and to shift point distribution
 a. “Completeness” is worth 20 pts (formerly 40 pts)
 b. “Analysis” is worth 140 pts (formerly 120 pts)
17. Section 2.7.1.3 (formerly Section 2.8.1.3) revised to replace SRAD evaluation with strategic design decisions evaluation, and to shift point values and distribution
 a. Competency of design and quality of construction worth 180 pts (formerly 100)
 b. SRAD evaluation replaced with strategic design decisions evaluation worth 60 pts
18. Section 2.7.1.4 (formerly Section 2.8.1.4) revised to widen scoring band to ±30% of the category target altitude (formerly ±2,000 ft)
19. Section 2.7.1.6 added to codify payload requirement violation penalties
20. Section 2.7.1.7 added to codify bonus for eligible CubeSat payload(s)
21. Section 2.7.1.8 added to codify bonuses for efficient launch preparation
22. Section 2.7.3 (formerly 2.8.3) revised for clarity and amended to codify Hoult and Barrowman awards
 a. Section 2.7.3.3 added to codify Hoult Award for Mod & Sim
 b. Section 2.7.3.4 added to codify Barrowman Award for Flight Dynamics
23. Former Section 2.11: Sponsored Challenges deleted with intent to host content on ESRA or SA Cup website
24. Former Section 3.0: Non-competing demonstration flights deleted with intent to host content on ESRA website
25. Hyperlinked cross-references
26. Other sections renumbered as needed
27. General edits for spelling, grammar, and clarity

Rev. A 05/13/2018
1. Former Section 2.1.2 deleted in response to participant lobbying
 a. Individual student organizations may once again enter multiple teams into the IREC
 b. Each of these teams will continue to represent one project/rocket
 c. A student organization should not have multiple teams entered in a single IREC category
2. Section 2.1.2 (formerly Section 2.1.3) renumbered due to previous section’s deletion

Rev. B 11/03/2018
1. Section 2.1.2 updated and renamed
 a. A student organization is limited to two teams with standard rationale for approving multiple teams
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b.</td>
<td>A student organization may submit a third team, but the rationale is subject to additional scrutiny for approval</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>A student organization may not submit more than three teams under any circumstances</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>Renamed to reflect the organization limits also set forth by this section: “Team Organization & Submission Limitations”</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Section 2.6.2 revised to show the requirement of completion /population of all fields in the document and the criteria and guidelines by which the Entry Form and Progress Updates will be reviewed</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>General edits for spelling, grammar, and clarity</td>
<td></td>
</tr>
</tbody>
</table>

Rev C
1. Removed all references to Dropbox™. All progress reports and documents are now to be uploaded to each team’s HeroX account.
2. Section 2.6.2 updated to limit Project Technical Reports file size to less than 20MB in size. Clarification that Project Technical Reports shall be submitted as a single PDF file (multiple files will not be accepted).
3. Minor formatting and grammar corrections throughout.

Rev D
1. Minor formatting and grammar corrections throughout.
2. Rocket Tracking updated with new GPS requirements

Rev E
1. Rewrote the Insurance section to clarify the rules for insurance coverage for solid rocket teams only.
2. Add GPS requirements with reference to DTEG for the detailed requirements
3. Removed the Introduction and Background sections as redundant
4. Added new section 2.1 header for clarity

Rev F
1. Updated scoring criteria for 2021 Virtual Spaceport America Cup. Removed scoring criteria for all flight phases. Added scoring criteria for poster session.
2. Removed liability waiver form requirement and link.

Rev G
1. Added guidance for poster session video

Rev H
1. Removed references for 3rd progress report
2. Clarified requirement for System Weights, Measures and Performance Data Appendix
3. Removed references to flight performance and launch attempts in Technical Achievement Awards section
4. Minor edits throughout
Table of Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 PURPOSE AND SCOPE</td>
<td>7</td>
</tr>
<tr>
<td>1.1 DOCUMENTATION</td>
<td>7</td>
</tr>
<tr>
<td>2.0 INTERCOLLEGIATE ROCKET ENGINEERING COMPETITION OVERVIEW</td>
<td>8</td>
</tr>
<tr>
<td>2.1 GENERAL GUIDELINES FOR DESIGN AND FLIGHT OPERATIONS</td>
<td>8</td>
</tr>
<tr>
<td>2.2 TEAM COMPOSITION AND ELIGIBILITY</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1 STUDENT TEAM MEMBERS</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2 TEAM ORGANIZATION AND SUBMISSION LIMITATIONS</td>
<td>9</td>
</tr>
<tr>
<td>2.3 PAYLOAD</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1 PAYLOAD MASS</td>
<td>9</td>
</tr>
<tr>
<td>2.3.2 INDEPENDENT PAYLOAD FUNCTIONALITY</td>
<td>10</td>
</tr>
<tr>
<td>2.3.3 PAYLOAD LOCATION AND INTERFACE</td>
<td>10</td>
</tr>
<tr>
<td>2.3.4 RESTRICTED PAYLOAD MATERIALS</td>
<td>10</td>
</tr>
<tr>
<td>2.3.5 PAYLOAD FORM FACTOR</td>
<td>10</td>
</tr>
<tr>
<td>2.4 FAA CLASS 2 AMATEUR ROCKET LIMITATION</td>
<td>11</td>
</tr>
<tr>
<td>2.5 GPS ROCKET TRACKING</td>
<td>11</td>
</tr>
<tr>
<td>2.6 OFFICIAL ALTITUDE LOGGING</td>
<td>12</td>
</tr>
<tr>
<td>2.7 PROJECT DELIVERABLES</td>
<td>12</td>
</tr>
<tr>
<td>2.7.1 ENTRY FORM AND PROGRESS UPDATES</td>
<td>13</td>
</tr>
<tr>
<td>2.7.2 PROJECT TECHNICAL REPORT</td>
<td>13</td>
</tr>
<tr>
<td>2.7.3 POSTER SESSION VIDEO</td>
<td>17</td>
</tr>
<tr>
<td>2.7.4 PODIUM SESSION MATERIALS</td>
<td>17</td>
</tr>
<tr>
<td>2.7.5 ADMINISTRATIVE DOCUMENTS</td>
<td>19</td>
</tr>
<tr>
<td>2.8 AWARDS AND SCORING</td>
<td>21</td>
</tr>
<tr>
<td>2.8.1 CATEGORY "PLACE" AWARDS</td>
<td>21</td>
</tr>
<tr>
<td>2.8.2 JUDGES CHOICE AND OVERALL WINNER AWARD</td>
<td>28</td>
</tr>
<tr>
<td>2.8.3 TECHNICAL ACHIEVEMENT AWARDS</td>
<td>28</td>
</tr>
</tbody>
</table>
2.8.4 TEAM CONDUCT AWARDS

2.9 DISQUALIFICATION FROM CONSIDERATION FOR ANY AWARD

2.10 WITHDRAWAL FROM COMPETITION

3.0 INTERNATIONAL TRAFFIC IN ARMS REGULATIONS

APPENDIX A: ACRONYMS, ABBREVIATIONS, AND TERMS
1.0 PURPOSE AND SCOPE

This document defines the rules and requirements governing participation in the IREC. Additional guidance for collegiate teams entered in the IREC is contained in the *IREC Design, Test, & Evaluation Guide (DTEG)*, maintained on the ESRA website. The DTEG provides teams with project development guidance ESRA uses to promote flight safety. Departures from this guidance may negatively impact an offending team's score and flight status depending on the degree of severity.

IREC teams should avoid feeling constrained before seeking clarification and may contact ESRA with questions or concerns regarding their project plans’ alignment with the spirit and intent of this document.

1.1 DOCUMENTATION

The following documents include standards, guidelines, schedules, or required forms. The documents listed in this section are either applicable to the extent specified herein or contain reference information useful in the application of this document.

<table>
<thead>
<tr>
<th>DOCUMENT</th>
<th>FILE LOCATION</th>
</tr>
</thead>
</table>
2.0 INTERCOLLEGIATE ROCKET ENGINEERING COMPETITION OVERVIEW

In general, student teams competing in the IREC must design, build, and launch a rocket carrying a payload of no less than 8.8 lbs. to a target apogee of either 10,000 ft or 30,000 ft above ground level (AGL). For 2021 only, the flight portion of the competition has been eliminated. Team Projects will be divided into one of the following six categories based on the type of project attempted. Teams are permitted to switch categories if required, prior to submitting their final Project Technical Report.

- 10,000 ft AGL apogee with commercial-off-the-shelf (COTS) solid or hybrid rocket propulsion system
- 30,000 ft AGL apogee with COTS solid or hybrid propulsion system
- 10,000 ft AGL apogee with student researched and developed (SRAD) solid rocket propulsion system
- 30,000 ft AGL apogee with SRAD solid rocket propulsion system
- 10,000 ft AGL apogee with SRAD hybrid or liquid rocket propulsion system
- 30,000 ft AGL apogee with SRAD hybrid or liquid rocket propulsion system

2.1 GENERAL GUIDELINES FOR DESIGN AND FLIGHT OPERATIONS

SRAD propulsion systems are defined as those designed by and manufactured by students. However due to constraints such as budget, lack of technical skills, tooling or financial, student teams may work with 3rd parties to assist in manufacturing of some components. Under no circumstances are the SRAD propellant components to be manufactured by a third party. This includes solid propellant grains

Multistage launch vehicles and all chemical propulsion disciplines (solid, liquid, and hybrid) are allowed.

Note that all propellants used must be non-toxic. Ammonium perchlorate composite propellant (APCP), potassium nitrate and sugar (aka "rocket candy"), nitrous oxide, liquid oxygen (LOX), hydrogen peroxide, kerosene, propane and similar substances, are all considered non-toxic. Toxic propellants are defined as those requiring breathing apparatus, special storage and transport infrastructure, extensive personal protective equipment, etc. (e.g., Hydrazine and N₂O₄).

ESRA uses the DTEG to define and promote flight safety. The IREC utilizes national standards including NFPA 1127, FAA and other regulatory organizations. The requirements are specifically listed in the DTEG. In addition, all Solid Propellant categories must strictly follow Tripoli Rocketry Range Safety Rules. Departures from the DTEG may negatively impact an offending team’s score and flight status, depending on the degree of severity.

Competition Officials will evaluate competitors for Awards within each competition category based on the quality of required project documentation, a Poster Session held during the SA Cup.
Conference, the quality of their system’s overall design and construction, and finally the program’s overall operational efficiency and performance demonstrated at the SA Cup. Furthermore, Competition Officials will select no less than 24 teams to present a particular aspect of their work in a Podium Session held during the SA Cup Conference. These teams are eligible to receive certain Technical Achievement Awards.

IREC teams should avoid feeling constrained before seeking clarification and may contact ESRA with questions or concerns regarding their project plans’ alignment with the spirit and intent of this document.

2.2 TEAM COMPOSITION AND ELIGIBILITY

2.2.1 STUDENT TEAM MEMBERS

IREC Teams shall consist of members who were matriculated undergraduate or graduate students (i.e., Masters or Doctoral students) during the previous academic year (e.g., former students who graduated shortly before the competition remain eligible) from one or more academic institutions (e.g., "joint teams" are eligible). There is no limit on the overall number of students per team, or on the number of graduate students per team. Individual students may only compete on a single team.

2.2.2 TEAM ORGANIZATION AND SUBMISSION LIMITATIONS

Each team shall submit no more than one project into the IREC. Furthermore, no project may be entered in more than one category at the IREC. Although, as previously noted, teams are permitted to switch categories as necessary prior to submitting their final Project Technical Report. The event organizers will track and evaluate each team separately, regardless of common student membership or academic affiliation.

Important: Due to the significant demand and limited availability of student team slots for the Spaceport America Cup, it has been deemed necessary to limit the number of competing teams to one per university.

2.3 PAYLOAD

2.3.1 PAYLOAD MASS

The launch vehicle shall carry no less than 8.8 lbs. of payload. Payload is defined as being replaceable with ballast of the same mass, with no change to the launch vehicle’s trajectory in reaching the target apogee, or its successful recovery. This payload may be assumed present when calculating the launch vehicle's stability. In other words, launch vehicles entered in the IREC need not be stable without the required payload mass on-board.
2.3.2 INDEPENDENT PAYLOAD FUNCTIONALITY

Although non-functional "boiler-plate" payloads are permitted, teams are highly encouraged to launch creative scientific experiments and technology demonstrations. However, launch vehicles shall be designed to deliver the payload to the target apogee and recover themselves independent of any active or passive payload function(s). For example, an active launch vehicle stability augmentation system is a launch vehicle subsystem – not a payload. Such launch vehicle subsystems will contribute to competition officials’ overall evaluation of a project, and may be submitted to the SA Cup Conference Podium Session described in Section 2.7.4 of this document, but they are not payloads.

Scientific experiments and technology demonstration payloads entered in the IREC may be evaluated for awards by representatives from the Space Dynamics Laboratory (SDL) as part of the SDL Payload Challenge – an Intercollegiate Payload Engineering Competition hosted at the Spaceport America Cup. Teams wishing to enter their payload(s) into the SDL Payload Challenge should consult the SDL Payload Challenge Page on the ESRA website (http://www.soundingrocket.org/sdl-payload-challenge.html).

2.3.3 PAYLOAD LOCATION AND INTERFACE

Neither the payload's location in the launch vehicle nor its method of integration and removal is specified; however, competition officials will weigh payload(s) independent of all launch vehicle associated systems prior to flight. Therefore, the payload(s) submitted for weigh-in shall not be inextricably connected to other launch vehicle associated components (e.g., the launch vehicle's recovery system, internal structure, or airframe) while being weighed. If the payload's design prevents it from being weighed completely independent of the launch vehicle, competition officials will impose a point penalty on the team in accordance with Section 2.8.1.5 of this document.

2.3.4 RESTRICTED PAYLOAD MATERIALS

Payloads shall not contain significant quantities of lead or any other hazardous materials. Similarly, any use of radioactive materials shall be permitted only if deemed operationally necessary and such operational necessity is concurred with by competition officials. If approved, any such materials shall be fully encapsulated and are limited to 1 µC or less of activity. Finally, payloads shall not contain any live, vertebrate animals.

2.3.5 PAYLOAD FORM FACTOR

The following sections concern the required shape and dimensions of payload(s) submitted for weigh-in. These requirements are different if the payload is a non-functional “boiler-plate” (aka mass emulator) or if it is a functional scientific experiment/technology demonstration (i.e., those entered in the SDL Payload Challenge). Section 2.3.5.1 defines the requirements for non-functional payloads. Section 2.3.5.2 defines the requirements for functional payloads.
2.3.5.1 **BOILER PLATE PAYLOAD**

Any launch vehicle carrying strictly non-functional, “boiler-plate” mass as it’s payload shall do so in the form of one or more CubeSats, which equal no less than 3U when stacked together. Each CubeSat shall be no less than 1U in size. One CubeSat Unit (1U) is defined as a 10cm×10cm×10cm (approx. 4in×4in×4in) cubic structure. Similarly, three CubeSat Units (3U) constitute either a single structure or a stack measuring 10cm×10cm×30cm (approx. 4in×4in×12in).

2.3.5.2 **SCIENTIFIC EXPERIMENT OR TECHNOLOGY DEMONSTRATION PAYLOAD**

Any functional scientific experiment or technology demonstration payload and its associated structure (i.e. those entered in the SDL Payload Challenge) may be constructed in any form factor, provided the experiment/technology and its associated structure remain in compliance with Sections 2.3.1, 2.3.2, 2.3.3, and 2.3.4 of this document. With special regard to compliance with Section 2.3.1, the required minimum payload mass should be achieved primarily by the experiment(s)/technology and associated support structure. The payload design may incorporate a limited amount of additional “boiler-plate” mass (perhaps as much as 2.25 lbs. or just over 1/4th the required minimum) to meet the required minimum while remaining exempt from Section 2.3.5.1 above. Competition officials may impose a point penalty on any team believed to be violating the spirit and intent of this rule in accordance with Section 2.8.1.5 of this document.

Finally, despite this exemption, ESRA and SDL highly encourage teams to adopt the CubeSat physical standard for their payload(s) whenever possible – either as the payload structure itself, or as an adapter which the payload is mated to prior to the combined assembly’s integration with the launch vehicle (such an adapter could be included in the official payload mass). To promote this encouragement, teams whose functional payloads do adopt the CubeSat physical standard will be awarded bonus points in the IREC in accordance with Section 2.8.1.6.

2.4 **FAA CLASS 2 AMATEUR ROCKET LIMITATION**

Launch vehicles entered in the IREC shall not exceed an installed total impulse of 9,208 pound-seconds (40,960 Newton-seconds), to meet the U.S. Federal Aviation Administration (FAA) definition of Class 2 Amateur Rocket (aka High-Power Rocket) - as per Code of Federal Regulations, Title 14 (14 CFR), Part 101, Subpart C, 101.22 Definitions.

2.5 **GPS ROCKET TRACKING**

Starting in 2021, all Spaceport America Cup launch vehicles shall carry a Global Position System (GPS) tracking system to expedite rocket recovery. GPS Tracking requirements are described in detail within the IREC Design, Test, and Evaluation Guide (DTEG), maintained on the ESRA website: (http://www.soundingrocket.org/sa-cup-documents--forms.html).
2.6 OFFICIAL ALTITUDE LOGGING

Launch vehicles shall carry a COTS barometric pressure altimeter with on-board data storage, which will provide an official log of apogee for scoring. This may either be a standalone COTS product or a feature of a COTS flight computer - also used for launch vehicle recovery system deployment. If a deployable payload is integrated on the launch vehicle, the official altitude logging system shall be mounted to the launch vehicle and not the payload.

2.7 PROJECT DELIVERABLES

The following sections define the deliverable materials (e.g., paperwork and presentation materials) competition officials require from teams competing in the IREC – including as appropriate each deliverable's format and minimum expected content. All deliverables will be submitted to ESRA per the instructions provided to the teams. Each relevant deliverable description will facilitate submission of that deliverable or will be communicated to teams as is determined by ESRA.

The scheduled due dates of all required deliverables are recorded in the Spaceport America Cup Integrated Master Schedule Document, maintained on the ESRA website

2.7.1 ENTRY FORM AND PROGRESS UPDATES

Each team shall inform ESRA of their desire to compete in the IREC by registering as a new team on the Spaceport America Cup HeroX website.

Teams shall submit two progress updates via the HeroX site by the dates specified in the Integrated Master Schedule Document prior to the competition. These progress updates will record progression in the project's technical characteristics during development. Competition officials understand not all technical details will be known until later in the design process. Therefore, the Entry Form and all subsequent Progress Updates prior to the final submission will be evaluated based only on their timeliness and completeness – defined as follows.

Total completeness of the entry form and subsequent updates is required at all times. Reasonable engineering estimates and approximations are expected during the application process but will be subject to progressive additional scrutiny in the subsequent Progress Updates. Teams should briefly mention their ongoing discussions and analysis in the comment fields for any numerical submissions that are known to be unreasonable or remain undecided. Teams may also respond to undecided criteria by demonstrating their understanding of any applicable event guidance or best practice governing the particular detail. In general, ESRA expects technical information to change, but information must always be provided. Only teams whose application meets this standard will be evaluated for entry into the competition. Accepted teams will be announced per the Master Schedule and each accepted team will receive a Team ID. Once assigned, any correspondence between a team and ESRA must contain that team's ID number to enable a timely and accurate response.

2.7.2 PROJECT TECHNICAL REPORT

Each team shall submit a Project Technical Report which overviews their project for the judging panel and other competition officials. The Project Technical Report shall be formatted according to the style guide of the American Institute of Aeronautics and Astronautics (AIAA), using a provided Microsoft® Word document template.

On or before a specified date prior to the event, teams shall submit a single digital PDF copy of their Project Technical Report. Technical reports exceeding 50 Megabytes in size may need to be uploaded to a cloud server as long as the permissions allow the judges unrestricted access to the document. Teams shall submit their Project Technical reports using the HeroX website (https://www.herox.com/SpaceportAmericaCup2021). Teams should bring a limited number of
hardcopies to the Spaceport America Cup so members of the judging panel and other competition
officials may consult the contents at will during interactions with the team.

The Project Technical Report's main title is left to the team's discretion, however; the paper shall
be subtitled “Team <Your Team ID> Project Technical Report to the <Year> Spaceport America
Cup”. For example, a team assigned the Team ID "42", competing in the 2021 IREC, would subtitle
their Project Technical Report "Team 42 Project Technical Report to the 2021 Spaceport America
Cup".

2.7.2.1 ABSTRACT

The Project Technical Report shall contain an Abstract. At a minimum, the abstract shall identify
the launch vehicle's mission/category in which the team is competing, identify any unique/defining
design characteristics of launch vehicle, define the payload's mission (if applicable), and provide
whatever additional information may be necessary to convey any other high-level project or
program goals & objectives.

2.7.2.2 INTRODUCTION

The Project Technical Report shall contain an Introduction. This section provides an overview of
the academic program, stakeholders, team structure, and team management strategies. The
introduction may repeat some of the content included in the abstract, because the abstract is
intended to act as a standalone synopsis if necessary.

2.7.2.3 SYSTEM ARCHITECTURE OVERVIEW

The Project Technical Report shall contain a System Architecture overview. This section shall
begin with a top-level overview of the integrated system, including a cutaway figure depicting the
fully integrated launch vehicle and its major subsystems – configured for the mission being flown
in the competition. This description shall be followed by the following subsections. Each
subsection shall include detailed descriptions of each subsystem, and reflect the technical analyses
used to support design and manufacturing decisions. Technical drawings of these subsystems
should be included in the specified appendix.

- Propulsion Subsystems
- Aero-structures Subsystems
- Recovery Subsystems
- Payload Subsystems

2.7.2.4 MISSION CONCEPT OF OPERATIONS OVERVIEW

The Project Technical Report shall contain a Mission Concept of Operations (CONOPS)
Overview. This section shall identify the mission phases, include a figure, and describe the nominal
operation of all subsystems during each phase (e.g., a description of what is supposed to be
occurring in each phase, and what subsystem[s] are responsible for accomplishing this).
Furthermore, this section shall define what mission events signify a phase transition has occurred (e.g., "Ignition" may begin when a FIRE signal is sent to the igniter and conclude when the propulsion system comes up to chamber pressure. Similarly, "Liftoff" may begin at vehicle first motion, and conclude when the vehicle is free of the launch rail). Phases and phase transitions are expected to vary from system to system based on specific design implementations and mission goals & objectives. No matter how a team defines these mission phases and phase transitions, they will be used to help organize failure modes identified in a Risk Assessment Appendix – described in Section 2.7.2.9 of this document.

2.7.2.5 CONCLUSIONS AND LESSONS LEARNED

The Project Technical Report shall contain Conclusions and Lessons Learned. This section shall include the lessons learned during the design, manufacture, and testing of the project, both from a team management and technical development perspective. Furthermore, this section should include strategies for corporate knowledge transfer from senior student team members to the rising underclassmen who will soon take their place.

2.7.2.6 SYSTEM WEIGHTS, MEASURES, AND PERFORMANCE DATA APPENDIX

The first Project Technical Report appendix shall contain System Weights, Measures, and Performance Data. This will be an updated and final version of the data in the second progress report.
2.7.2.7 PROJECT TEST REPORTS APPENDIX

The second Project Technical Report appendix shall contain applicable Test Reports from the minimum tests prescribed in the IREC Design, Test, & Evaluation Guide (http://www.soundingrocket.org/sa-cup-documents--forms.html). These reports shall appear in the following order. In the event any report is not applicable to the project in question, the team will include a page marked "THIS PAGE INTENTIONALLY LEFT BLANK" in its place.

- Recovery System Testing: In addition to descriptions of testing performed and the results thereof, teams shall include in this appendix a figure and supporting text describing the dual redundancy of recovery system electronics.

- SRAD Propulsion System Testing (if applicable): In addition to descriptions of testing performed and the results thereof, teams developing SRAD hybrid or liquid propulsion systems shall include in this appendix a fluid circuit diagram. This figure shall identify nominal operating pressures at various key points in the system – including the fill system.

- SRAD Pressure Vessel Testing (if applicable)

2.7.2.8 HAZARD ANALYSIS APPENDIX

The third Project Technical Report appendix shall contain a Hazard Analysis. This appendix shall address as applicable, hazardous material handling, transportation and storage procedures of propellants, and any other aspects of the design which pose potential hazards to operating personnel. A mitigation approach – by process and/or design – shall be defined for each hazard identified. An example of such a matrix is available on the ESRA website at (http://www.soundingrocket.org/sa-cup-documents--forms.html).

2.7.2.9 RISK ASSESSMENT APPENDIX

The fourth Project Technical Report appendix shall contain a Risk Assessment. This appendix shall summarize risk and reliability concepts associated with the project. All identified failure modes which pose a risk to mission success shall be recorded in a matrix, organized according to the mission phases identified by the CONOPS. A mitigation approach – by process and/or design – shall be defined for each risk identified. An example of such a matrix is available on the ESRA website at (http://www.soundingrocket.org/sa-cup-documents--forms.html).

2.7.2.10 ASSEMBLY, PREFLIGHT, AND LAUNCH CHECKLISTS APPENDIX

The fifth Project Technical Report appendix shall contain Assembly, Preflight, and Launch Checklists. This appendix shall include detailed checklist procedures for final assembly, arming, and launch operations. Furthermore, these checklists shall include alternate process flows for disarming/safeing the system based on identified failure modes. These off-nominal checklist procedures shall not conflict with the IREC Range Standard Operating Procedures. Teams developing SRAD hybrid or liquid propulsion systems shall also include in this appendix a
description of processes and procedures used for cleaning all propellant tanks and other fluid circuit components.

Competition officials will verify teams are following their checklists during all operations – including assembly, preflight, and launch operations. Therefore, teams shall maintain a complete, hardcopy set of these checklist procedures with their flight hardware during all range activities.

2.7.2.11 ENGINEERING DRAWINGS APPENDIX

The sixth Project Technical Report appendix shall contain Engineering Drawings. This appendix shall include any revision controlled technical drawings necessary to define significant subsystems or components – especially SRAD subsystems or components.

2.7.3 POSTER SESSION VIDEO

Each team will submit a 15-minute video that will provide an overview of your project for members of the judging panel, other students and attendees, and industry representatives. This video should, at a minimum, cover the project objectives, design, key tradeoffs, CONOPS, and should show build quality as much as practical. Teams are encouraged to be creative and to provide a high quality, thorough, and engaging presentation.

There is no required format or structure for the video, other than it be no longer than 15 minutes (Note: teams submitting videos longer than 15:00 minutes will receive zero points for the poster session). Think of it as if a judge walked up to your team and asked you, “Tell me about your project.” It is up to the team how to answer that question. Potential items to include could be a discussion of the build process, how you designed your rocket, what important tradeoffs you needed to make, testing, along with anything you want to highlight to the judges. Teams should take the opportunity to demonstrate overall member knowledge of the project (e.g., let multiple team members speak).

After judges have reviewed team videos, teams will have a scheduled 15-minute Q&A session with their assigned judges during the conference. Poster session videos will be evaluated in accordance with section 2.8.1.4 of this document.

Teams will post their videos on YouTube and provide a working link to the Spaceport America Cup HeroX website (https://www.herox.com/SpaceportAmericaCup2021) no later than the date specified in the Integrated Master Schedule. Event organizers will post video links and selected videos in an online archive of the conference proceedings.

2.7.4 PODIUM SESSION MATERIALS

Each team shall submit an Extended Abstract on a particular aspect of their work for competition officials and the judging panel to consider including in a Podium Session held during the SA Cup Conference. Teams whose topics are accepted into the Podium Session will be considered eligible for Technical Achievement Awards defined in Section 2.8.3 of this document. The Extended
Abstract shall be formatted according to the style guide of the American Institute of Aeronautics and Astronautics (AIAA), using a provided Microsoft® Word document template.

The *Intercollegiate Rocket Engineering Competition Extended Abstract* template is available for download on the ESRA website (http://www.soundingrocket.org/sa-cup-documents--forms.html). Always check the template maintained on the ESRA website before drafting your Extended Abstract to ensure you are using the latest version.

The Extended Abstract’s main title is left to the team's discretion, however; the document shall be subtitled "Team Your Team ID Technical Presentation to the Year Spaceport America Cup". For example, a team assigned the Team ID "42", competing in the 2021 IREC, would subtitle their Extended Abstract "Team 42 Technical Presentation to the 2021 Spaceport America Cup".

The Extended Abstract shall be no less than 500 words long and shall not exceed two pages, not including footnotes, sources, or source endnotes. The Extended abstract should not contain any tables, figures, nomenclature lists, equations, appendices etc. The submission must include sufficient detail to demonstrate its purpose, the technical foundation for the topic discussed, any preliminary results to date, and the expected results of flight testing at the Spaceport America Cup.

The topic a team selects for their Podium Session submission should be an aspect of their launch vehicle development which they are particularly proud of, excited about, learned the most in the process of, creates new knowledge, advances the field's understanding of a particular area, presented a unique technical challenge they overcame, and/or otherwise best demonstrates the team's technical excellence and/or innovation in a particular aspect of their work. A few examples of student work from past IREC which would have made strong Podium Session submissions include the following. (This list is intended to be thought provoking only and is in no way intended to be either comprehensive, exclusive, or otherwise limiting.)

- Design, analysis, and testing of additively manufactured plastic fins for transonic and supersonic flight
- Design, analysis, and testing of grid-fins
- Design, analysis, and testing of plasma based electrodynamic roll control actuators
- Rigorous internal ballistics analysis of a large SRAD solid rocket propulsion system
- Design, analysis, and testing of a drag reducing aerospike equipped nosecone
- Rigorous verification & validation testing of a SRAD ignition system for simultaneous activation of parallel rocket stages comprising multiple combustion cycles
- Design, analysis, and flight demonstration of automated, active telemetry transmitter tracking by a steerable, ground-based antenna
- Rigorous verification & validation testing of a SRAD propulsion system, including propellant characterization and multiple hot fire tests
- Design, analysis, and testing of "rollerons" implemented for passive roll stability augmentation
● Design, analysis, and testing of an additively manufactured liquid rocket engine combustion chamber
● Progress in a regimented iterative approach to developing and implementing an active stability augmentation system
● Rigorous post-test analysis and characterization of a previously undefined hybrid rocket motor failure mode
● Design, analysis, and testing of a regenerative cooling system
● Structural design based on exquisite aerodynamic/aerothermal loads analysis
● Exquisite trajectory analysis verified by flight demonstration
● Manufacturing capabilities enabled by SRAD fiber composite filament winding technology
● Structural analysis of fiber composite laminates using non-isentropic analytic techniques

On or before a specified date prior to the event, teams shall submit a digital, PDF copy of their Extended Abstract to the HeroX website (https://www.herox.com/SpaceportAmericaCup2021). The event organizers will post these files in an online archive of the conference day proceedings. The submittal location and method for the Extended Abstract is to be determined and will be communicated to the teams.

At the same time they submit their Extended Abstract, teams shall also submit a digital, PDF copy of any slides they wish to use in their presentation to the HeroX website. The event organizers will post these files in an online archive of the conference proceedings. The submittal location and method for the Presentation Slides is to be determined and will be communicated to the teams.

No less than 24 teams will be accepted into the Podium Session. Each presentation will be allotted 20 minutes, with an additional five minutes reserved for Q&A with judges and other audience members. Whether accepted into the Podium Session or not, all attending teams should be prepared to participate in this activity. On the conference day itself, competition officials may ask teams whose Extended Abstracts were considered "runners up" to take the place of any selected teams who fail to attend the Spaceport America Cup.

2.7.5 ADMINISTRATIVE DOCUMENTS

2.7.5.1 SCHOOL PARTICIPATION LETTER

Each team shall have the academic institution(s) in which its members are enrolled provide a signed letter to ESRA, acknowledging the team's participation in the IREC at the Spaceport America Cup. The signature shall be that of a faculty member or other paid, non-student staff representative. This will affirm the team in question does in fact represent the academic institution(s) its members claim affiliation with. Academic institutions sending more than one team to the IREC need only write one participation letter, covering all their teams, but each included team must submit an individual copy of that letter. In the case of a joint team, comprised of students
from multiple academic institutions, each affiliated institution must provide its own letter to the
team.

An example Spaceport America Cup School Participation Letter is available for download on the

On or before a specified date prior to the event, teams shall submit digital, PDF copy(s) of their
signed school participation letter(s) to the HeroX website. For example, a team from Starfleet
Academy would submit the digital copy of their signed school participation letter. Similarly, if this
same team were one formed jointly by students from Starfleet Academy and the Vulcan Science
Academy, they would submit two files.

2.7.5.2 INSURANCE

The event’s insurance policy provides liability coverage for ESRA, NMSA, and the state of New
Mexico. This liability coverage does not apply to the student team or the individual students.

While some teams may be covered by their college or university, some are not. To resolve the
insurance concern for solid propulsion rocket teams, ESRA and the Tripoli Rocketry Association
(www.tripoli.org) are working together such that all solid propulsion rocket categories (i.e.
10K/30K COTS, 10K/30k SRAD solid categories) are covered under Tripoli Launch Insurance
at no additional cost (except Tripoli membership fees, see below).

All solid propellant rocket category teams must adhere to the following rules:

- Each solid rocket motor team must have a designated Tripoli (COTS/SRAD) or NAR
 (COTS Only) Level 3 Certified Flyer of Record.
- A Tripoli (COTS/SRAD) or NAR (COTS Only) Level 3 Certified member must be in
 attendance with the team at the competition.
- Solid rocket motor teams must strictly adhere to Tripoli Rocketry Range Safety Rules
- All students who will install motors, install ignitors, or assist with rocket installation at
 the launch pads must be Tripoli (COTS/SRAD) or NAR (COTS Only) members (NOTE:
 At the time of this writing, Tripoli student membership is $10 per student. Memberships
 will be available for purchase at the competition).

NOTE: If a solid rocket motor team does not have a L3 certified Tripoli or NAR (COTS Only)
member, they should contact the Tripoli Rocketry Association (COTS/SRAD) or the National
Association of Rocketry (COTS Only) to find a L3 certified mentor who will attend the
competition.

Liquid and Hybrid category teams are NOT COVERED by Tripoli Launch Insurance. Liquid
and Hybrid teams are highly encouraged to seek additional insurance coverage. ESRA is not
responsible for and cannot assist in finding suitable insurance policies.

Details for the Tripoli Insurance policy can be found at: http://www.tripoli.org/Insurance
2.8 AWARDS AND SCORING

2.8.1 CATEGORY "PLACE" AWARDS

A First Place Award will be granted to the highest scoring, eligible team in each of the six categories defined in Section 2.0 of this document. A Second Place Award will be granted to the second highest scoring, eligible team in each category.

Teams are permitted to switch categories as necessary prior to submitting their final Project Technical Report. For example, if an SRAD propulsion system project encounters insurmountable difficulties at any point during the academic year, the student team is free to defer work on the SRAD system and opt for a near-term COTS solution without dropping out of the competition; however, each team’s project will be entered into only one competition category. For example, a single team may not compete in two categories in the same year by flying once using a COTS motor, then again using an SRAD motor. In the event such a possibility exists for any team, the organizers highly encourage that team to compete in an SRAD rather than a COTS category.

Competition officials will award points based on their evaluation of each teams required documentation (including the Entry Form, Progress Updates, and Project Technical Report), design implementation and the quality of their poster session.

2.8.1.1 SCORING ENTRY FORM AND PROGRESS UPDATE DELIVERIES

The correct, complete, and timely delivery of a team’s Entry Form and subsequent Progress Updates is awarded as many as 100 points – 10% of 1,000 total points possible. The Entry Form and subsequent updates are considered correct if they are submitted using the template specified in Section 2.7.1 of this Document. They will be considered complete if they are filled out in accordance with Section 2.7.1 of this Document. They will be considered timely if they are received no later than 72 hours after the deadline specified in the Spaceport America Cup Integrated Master Schedule Document.

The 100 points are divided evenly among the three submissions (i.e. the Entry Form and two subsequent Project Updates), with the Entry Form worth 20 points and the two Project Updates worth 40 points each. The submission is awarded these points on a pass/fail basis and must meet all three criteria – correctness, completeness, and timeliness – in order to “pass.” Although they will not receive points for the submission, teams which miss a 72 hour submission window are still required to make that submission as soon as possible for administrative purposes – unless that team no longer plans to attend the Spaceport America Cup.

Teams which enter the IREC later in the academic year, after the first progress report is normally due, will receive special instructions upon entry on how their Entry Form and subsequent Progress Updates will be handled.
2.8.1.2 SCORING PROJECT TECHNICAL REPORT

Timely Project Technical Reports will be awarded as many as 400 points – 40% of 1,000 points possible – for their correctness, completeness, and analysis. Only timely Project Technical Reports will be evaluated and scored. A Project Technical Report is considered timely if it is received no later than 72 hrs. after the deadline specified in the Spaceport America Cup Integrated Master Schedule Document. Although they will not receive points for the submission, teams which miss the 72 hr. submission window are still required to make that submission as soon as possible for administrative purposes – unless that team no longer plans to attend the Spaceport America Cup.

Correctness is worth 20% (80 points) of the Project Technical Report's overall point value. Correctness is defined by its adherence to the format/style guide specified in Section 2.7.2 of this document and upholding of basic technical editing standards. The report’s correctness will be rated on a scale of 1-4 as follows – where each integer corresponds to a factor of 20 points.

(4 – 80 points) A rating of 4 indicates exemplary quality. The paper requires no substantial correction of grammatical mistakes, misspellings, mistyping, incorrect punctuation, inconsistencies in usage, poorly structured sentences, wrong scientific terms, wrong units and dimensions, inconsistency in significant figures, technical ambivalence, technical disambiguation, statements conflicting with general scientific knowledge, etc... Furthermore, the paper contains no stylistic errors deviating from the prescribed style guide.

(3 – 60 points) A rating of 3 indicates at least average quality. The paper requires minimal correction of grammatical mistakes, misspellings, mistyping, incorrect punctuation, inconsistencies in usage, poorly structured sentences, wrong scientific terms, wrong units and dimensions, inconsistency in significant figures, technical ambivalence, technical disambiguation, statements conflicting with general scientific knowledge, etc... The paper may contain minimal, insubstantial deviations from the prescribed style guide.

(2 – 40 points) A rating of 2 indicates no greater than average quality. Overall, the paper's quality is symbolic of the proverbial "first draft". The paper requires some substantial correction of grammatical mistakes, misspellings, mistyping, incorrect punctuation, inconsistencies in usage, poorly structured sentences, wrong scientific terms, wrong units and dimensions, inconsistency in significant figures, technical ambivalence, technical disambiguation, statements conflicting with general scientific knowledge, etc... The paper deviates significantly from the prescribed style guide or is formatted in accordance with another style guide entirely.

(1 – 20 points) A rating of 1 indicates poor quality. The paper requires numerous substantial corrections of grammatical mistakes, misspellings, mistyping, incorrect punctuation, inconsistencies in usage, poorly structured sentences, wrong scientific
terms, wrong units and dimensions, inconsistency in significant figures, technical
ambivalence, technical disambiguation, statements conflicting with general scientific
knowledge, etc... The paper makes little or no attempt at cohesive formatting in
accordance with either the prescribed or any other style guide.

Completeness is worth 10% (40 points) of the Project Technical Report's overall point value. The
Project Technical Report is considered complete if it contains all minimally required content
defined in Section 2.7.2 of this document. Points for completeness are awarded on a pass/fail basis,
and only minor omissions or ambiguity of required information is tolerated in a passing evaluation.

Analysis is worth 70% (280 points) of the Project Technical Report's overall point value. This
constitutes a structured, qualitative assessment by the evaluating competition officials of the
analytic rigor demonstrated by the team during the iterative down-selection, refinement, and
acceptance of all project aspects. The report's analysis will be rated on a scale of 1-4 as follows –
where each integer corresponds to a factor of 70 points. Furthermore, this score may be amended
at the Spaceport America Cup itself, based on the evaluators’ assessment of the team’s conceptual
understanding during any interactions.

(4 – 280 points) A rating of 4 indicates exemplary quality. The paper provides adequate
discussion of all key design decisions, including relevant trade space descriptions,
constraints, and overall rationale. Furthermore, the paper provides adequate
discussion of all key verification & validation tests performed on the final design – as
well as any significant progenitors – and demonstrates complete, valid conclusions
were drawn from the results. Finally, the paper makes appropriate use of tables,
figures, and appendices to effectively organize information and communicate it to the
reader.

(3 – 210 points) A rating of 3 indicates at least average quality. The paper provides
adequate discussion of most key design decisions, including relevant trade space
descriptions, constraints, and overall rationale. Furthermore, the paper provides
adequate discussion of most key verification & validation tests performed on the final
design, and demonstrates complete, valid conclusions were drawn from the results.
Finally, the paper generally makes appropriate use of tables, figures, and appendices
to effectively organize information and communicate it to the reader.

(2 – 140 points) A rating of 2 indicates no greater than average quality. Overall, the
paper's quality is symbolic of the proverbial "first draft". The paper provides adequate
discussion of some key design decisions, including relevant trade space descriptions,
constraints, and overall rationale. Furthermore, the paper provides evidence of
sufficient verification & validation testing performed on the final design, but does not
consistently demonstrate complete, valid conclusions were drawn from the results.
Finally, the paper would be improved by more appropriate use of tables, figures, and
appendices to effectively organize information and communicate it to the reader.
(1 – 70 points) A rating of 1 indicates poor quality. The paper lacks adequate discussion of any key design decisions and makes little to no attempt at describing the relevant trade spaces, constraints, or overall rationale. Furthermore, the paper lacks evidence sufficient verification & validation testing was performed at any point during the design process. Finally, the paper makes either no, or minimally effective, use of tables, figures, and appendices to organize information and communicate it to the reader.

2.8.1.3 SCORING DESIGN IMPLEMENTATION

Teams will be awarded as many as 500 points – 50% of 1,000 points possible – for the overall competency of design, quality of construction, and strategic design decisions exhibited by their work. Competition officials will evaluate these criteria through interactions with the teams and their systems, occurring throughout the SA Cup Conference Poster Session.

Competency of design and quality of construction are worth 30% (150 points) of the overall value assigned to Design Implementation. This constitutes a structured, qualitative assessment by the competition officials of the team's relative competency in the physical principals governing their design (e.g., Did the team demonstrate they know what they're doing by designing something likely to work with a greater or lesser degree of success – provided it is sufficiently well constructed?) and the quality with which that design was constructed (e.g., Is the finished product sufficiently well-constructed to meet the needs of the underlying design). The project's design and construction will be rated on a scale of 1-4 as follows – where each integer corresponds to a factor of 37.5 points.

(4 - 150 points) A rating of 4 indicates exemplary quality. All features of the project hardware reflect strong competency in the physical principals governing their design and are of more than sufficient quality to operate as intended without risk of premature failure due to fatigue or reasonably expected loading. Wherever possible, the project hardware exhibits robust design characteristics – which decrease its sensitivity to reasonably expected variations in "real-world" operations. Furthermore, the overall system exhibits evidence of a strong systems engineering discipline maintained throughout development (e.g., lacking any features which are both critical systems, and yet clearly implemented as "afterthoughts" to the intended system). Finally, the overall system complies with all expectations set by the IREC, Design, Test, & Evaluation Guide.

(3 – 112.5 points) A rating of 3 indicates at least average quality. All key features of the project hardware reflect adequate competency in the physical principals governing their design and are of sufficient quality to operate as intended without risk of premature failure due to fatigue or reasonably expected loading. Furthermore, the project hardware makes at least some robust design characteristics in key areas –
which decrease these components' or assemblies' sensitivity to reasonably expected variations in "real world" operations. Finally, the overall system exhibits evidence of a strong systems engineering discipline maintained throughout development (e.g. lacking any features which are both critical systems, and yet clearly implemented as "afterthoughts" to the intended system). Finally, the overall system complies with all expectations set by the IREC, Design, Test, & Evaluation Guide.

(2 – 75 points) A rating of 2 indicates no greater than average quality. All key features of the project hardware reflect adequate competency in the physical principals governing their design and are of sufficient quality to operate as intended without risk of premature failure due to fatigue or reasonably expected loading. No obvious attempts are made at robust design to decrease the system's to reasonably expected variations in "real-world" operations. Furthermore, the overall system may exhibit evidence of lapses in systems engineering discipline (e.g., operation of the overall system is facilitated by one or "field modifications" – which have become critical systems themselves yet are clearly implemented as "afterthoughts" to the intended system). Finally, the overall system complies with the minimum expectations set by the IREC, Design, Test, & Evaluation Guide.

(1 – 37.5 points) A rating of 1 indicates poor quality. One or more key features of the project hardware reflect inadequate competency in the physical principles governing their design, and/or are of insufficient quality to operate as intended without risk of premature failure due to fatigue or reasonably expected loading. No obvious attempts are made at robust design to decrease the system's to reasonably expected variations in "real-world" operations. Furthermore, the overall system may exhibit evidence of lapses in systems engineering discipline (e.g., operation of the overall system is facilitated by one or "field modifications" – which have become critical systems themselves yet are clearly implemented as "afterthoughts" to the intended system). Such a system fails to meet the minimum expectations set by the IREC, Design, Test, & Evaluation Guide.

The team’s consideration of strategic design decisions is worth 30% (150 points) of the overall value assigned to Design Implementation. This constitutes a structured qualitative assessment by the competition officials of the team's due diligence in deciding how best to implement their design – in keeping with a strategic vision they can articulate clearly. In general, teams should set strategic goals for their project which extend beyond simply excelling in a particular category. ESRA places special significance on projects which leverage SRAD in a particular aspect, either to enhance the team’s understanding of that subject, or to develop technology necessary for achieving a longer-term performance goal. While this evaluation can encompass a broad range of factors, the following 1-4 rating structure (where each integer corresponds to a factor of 37.5 points) illustrates some of the most significant factors competition officials will be coached to consider.
(4 - 150 points) A rating of 4 indicates exemplary strategic consideration given to the COTS and SRAD elements of the project. Interactions with team members demonstrate a clear, achievable vision for how challenges were selected to advance strategic goals, and the project’s design implementation mirrors this. Furthermore, the manufacturing methods used in SRAD aspects of the project, such as additive manufacturing for example, are generally appropriate for the intended use and well understood by the team. This understanding extends not only to how the method works, but also its impact on project timelines, cost, and physical performance.

(3 – 112.5 points) A rating of 3 indicates at least average strategic consideration given to the COTS and SRAD elements of the project. Interactions with team members demonstrate a relatively clear, achievable vision for how challenges were selected to advance strategic goals, and the project’s design implementation generally mirrors this. Furthermore, the manufacturing methods used in SRAD aspects of the project, such as additive manufacturing for example, are generally appropriate for the intended use and reasonably well understood by the team. This understanding extends to how the method works, and also its impact on project timelines, cost, and physical performance – in at least the most rudimentary sense.

(2 - 75 points) A rating of 2 indicates no better than average strategic consideration given to the COTS and SRAD elements of the project. Interactions with team members demonstrate an unrefined or questionably achievable vision for how challenges were selected to advance strategic goals, and the project’s design implementation generally mirrors this. Furthermore, the manufacturing methods used in SRAD aspects of the project, such as additive manufacturing for example, are generally appropriate for the intended use, but may not be fully understood by the team. Their understanding extends in only the most limited ways to how the method works, its impact on project timelines, cost, and physical performance – and may be even more lacking in some areas.

(1 – 37.5 points) A rating of 1 indicates poor strategic consideration given to the COTS and SRAD elements of the project. Interactions with team members demonstrate little-to-no or completely unachievable vision for how challenges were selected to advance strategic goals, and the project’s design implementation generally mirrors this. Furthermore, the manufacturing methods used in SRAD aspects of the project, such as additive manufacturing for example, are either impractical for the intended use or not well understood by the team. Their understanding is severely lacking in how the method works, as well as its impact on project timelines, cost, and physical performance.

The team’s poster session is worth 40% (200 points) of the overall value assigned to Design Implementation. This constitutes a structured qualitative assessment by the competition officials of the team’s performance during the poster session. In general, teams should provide a clear, error-free, and engaging presentation on their project during their poster session and while responding
to questions from the judges. Teams should be knowledgeable about all aspects of their project and be prepared to articulate their understanding to the judges, both during their poster session and while responding to questions. While this evaluation can encompass a broad range of factors, the following 1-4 rating structure (where each integer corresponds to a factor of 50 points) illustrates some of the most significant factors competition officials will be coached to consider.

(4 – 200 points) A rating of 4 indicates an exemplary presentation. All key elements of the project are covered, and the discussion is technically correct. All key tradeoffs and challenges of the project are clearly explained. Team members display complete knowledge of the project. Presentation quality is uniformly excellent and graphics or visual elements add clarity to the presentation.

(3 – 150 points) A rating of 3 indicates at least an average presentation. Key elements are largely addressed, and any omissions are minor. Discussion is technically correct with at most minor flaws. Explanation of key tradeoffs and challenges is generally complete but may have minor omissions and some minor unclear points. Team members are generally knowledgeable but defer to a few clear experts. Presentation quality is solid with at most a few rough spots and some unclear graphics.

(2 – 100 points) A rating of 2 indicates a no better than average presentation. Key elements are generally addressed with some omissions. Discussion is generally correct but exhibits some significant misunderstandings. Explanation of key tradeoffs and challenges addresses some elements but is incomplete. Team members show limited knowledge as a whole and defer to one or two experts. Presentation quality is generally effective but has significant rough spots and may have misleading graphics.

(1 – 50 points) A rating of 1 indicates a poor presentation. Limited or absent discussion of key elements. The technical discussion exhibits a large amount of hand-waving rather than understanding. Explanation of key tradeoffs and challenges is unclear or non-existent. Team members show little personal knowledge of the project and there is no clear leader. Presentation quality is often ineffective or confusing due to detracting elements or poor organization.

2.8.1.4 PENALTIES FOR UNSAFE OR UNSPORTSMANLIKE CONDUCT

Teams will be penalized 20 points off their total earned score for every instance of unsportsmanlike conduct recorded by competition officials (e.g. judges, volunteers, or staff members). Unsportsmanlike conduct includes, but is not limited to, hostility shown towards any Spaceport America Cup Participant, intentional misrepresentation of facts to any competition official, intentional failure to comply with any reasonable instruction given by a competition official.
2.8.1.5 PENALTIES FOR VIOLATING PAYLOAD REQUIREMENTS

Teams will be penalized 100 points off their total earned score for each of the five payload requirements described in Section 2.3 of this document in spirit or intent. These include Mass, Independent Function, Location & Interface, Restricted Materials, and Form Factor. With regard to mass, due to the allowance made for differences in measuring devices, teams will not be permitted to modify their payloads with additional mass to avoid penalty at the event.

2.8.1.6 BONUSES FOR CUBESAT BASED PAYLOADS

Teams whose payload(s) qualify for the form factor exemption described in Section 2.3.5.2 of this document, yet still adopt the CubeSat standard form factor, will be awarded 50 bonus points in addition to their total earned score. This promotes ESRA and SDL’s encouragement that teams adopt the CubeSat standard for their payload(s) whenever possible – either as the payload structure itself, or as an adapter which the payload is mated to prior to the combined assembly’s integration with the launch vehicle (such an adapter could be included in the official payload mass).

2.8.2 JUDGES CHOICE AND OVERALL WINNER AWARD

One team among the First Place Award winners in the six categories defined in Section 2.0 of this document will be named the overall winner of the Spaceport America Cup: Intercollegiate Rocket Engineering Competition, and will receive their own copy of the Genesis Cup trophy! A perpetual trophy rendition of the Genesis Cup is displayed in the Gateway Gallery at Spaceport America. The recipient of this prestigious award is determined by qualitative assessments of the competition officials made throughout the entire event.

2.8.3 TECHNICAL ACHIEVEMENT AWARDS

ESRA presents three awards recognizing technical achievement to deserving teams competing in the IREC. Three of these are awarded based on the competition officials’ qualitative assessments made during the Podium Session held during the SA Cup Conference, and interactions during Q&A sessions.

2.8.3.1 JIM FURFARO AWARD FOR TECHNICAL EXCELLENCE

The Jim Furfaro Award for Technical Excellence recognizes a team which demonstrates exceptional overall engineering discipline and technical skill through their analyses and conclusions, project or program planning and execution, operational procedure, manufacturing processes, iterative improvement, systems engineering methodology, robust design, etc. A team is considered eligible for the Jim Furfaro Award if they are accepted into – and participate in – the Podium Session held during the conference day at the Spaceport America Cup.
2.8.3.2 DR. GIL MOORE AWARD FOR INNOVATION

The Dr. Gil Moore Award for Innovation recognizes a team whose project includes one or more features (including analytic or operational processes as well as components or assemblies) the judging panel finds genuinely "novel", "inventive", or solving a unique problem identified by the team. A team is considered eligible for the Dr. Gil Moore Award if they are accepted into – and participate in – the Podium Session held during the conference day at the Spaceport America Cup.

2.8.3.3 CHARLES HOULT AWARD FOR MODELING & SIMULATION

The Charles Hoult Award for Modeling & Simulation recognizes a team demonstrating excellence in math modeling and computational analyses. A team is considered eligible for the Charles Hoult Award if they are accepted into – and participate in – the Podium Session held during the conference day at the Spaceport America Cup.

2.8.4 TEAM CONDUCT AWARDS

ESRA presents two awards recognizing teams competing in the IREC whose conduct throughout the Spaceport America Cup is exemplary of goals and ideals held by the event organizers. The Spaceport America Cup should be an event where academia, industry, and the public may come together to preserve, popularize, and advance the science of rocketry in a collaborative environment energized by friendly competition.

2.8.4.1 TEAM SPORTSMANSHIP AWARD

The Team Sportsmanship Award recognizes a team which goes above and beyond to assist their fellow teams and the event organizers assure the Spaceport America Cup: Intercollegiate Rocket Engineering Competition is a productive, safe, and enjoyable experience for all involved. They may do this in many ways, such as making themselves available to lend-a-hand whenever and however they can (whether they are asked to or not), being positive role models for their fellow teams, and generally being a "force for good" in every activity in which they involve themselves. A team is considered eligible for the Team Sportsmanship Award by being present at the Spaceport America Cup.

2.8.4.2 TEAM SPIRIT AWARD

The Team Spirit Award recognizes a team which arrives at the Spaceport America Cup with proverbial (or literal) smiles on their face, a school flag in their hand, and never lets either waiver throughout the event. They show great pride in their work, learn from their mistakes, remain positive when things don't go their way, engage members of the general public with respect and enthusiasm, and show respect for invited guests by attending and participating guest speaker presentations whenever possible. A team is considered eligible for the Team Sportsmanship Award by being present at the Spaceport America Cup.
2.9 DISQUALIFICATION FROM CONSIDERATION FOR ANY AWARD

A limited number of criteria constitute grounds for disqualification from consideration for any award. These can include a failure to meet the defining IREC mission requirements recorded in Sections 2.0 through 2.6 of this document, failure to submit a Project Technical Report or third/final progress update at any time prior to the Spaceport America Cup (or otherwise failing to provide adequate project details in required deliverables), and failure to send eligible team member representatives to the Spaceport America Cup. Finally, any Team found to have accrued at least 10 safety or unsportsmanlike conduct infractions at any time during the Spaceport America Cup will be disqualified. Any individual observed committing a single, severe safety or unsportsmanlike conduct infraction may be summarily removed and barred from participation in the remainder of the Spaceport America Cup.

2.10 WITHDRAWAL FROM COMPETITION

Teams which decide to formally withdraw from the IREC at any time prior to the event must send an e-mail entitled "TEAM <Your Team ID> FORMALY WITHDRAWS FROM THE Competition Year IREC" to general.info@esrarocket.org. For example, a team assigned the Team ID "42" would withdraw from the 2021 IREC by sending an e-mail entitled "TEAM 42 FORMALY WITHDRAWS FROM THE 2021 IREC" to general.info@esrarocket.org.

3.0 INTERNATIONAL TRAFFIC IN ARMS REGULATIONS

Speakers and attendees of the Spaceport America Cup are reminded that some topics discussed at conferences could be controlled by the International Traffic in Arms Regulations (ITAR). The Spaceport America Cup is intended as an ITAR-free event. U.S. persons (U.S. citizens and permanent residents) are responsible for ensuring that technical data they present in open sessions to non-U.S. persons in attendance or in conference proceedings are not export restricted by the ITAR. U.S. persons are likewise responsible for ensuring that they do not discuss ITAR export-restricted information with non-U.S. nationals in attendance. Similarly, US person authors of IREC Project Technical Reports as well as Podium Session submissions and associated slide decks are responsible for ensuring the content of their materials does not exceed the interpretation of "fundamental research" and the ITAR established by their affiliated academic institution(s).
APPENDIX A: ACRONYMS, ABBREVIATIONS, AND TERMS

<table>
<thead>
<tr>
<th>ACRONYMS & ABBREVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGL Above Ground Level</td>
</tr>
<tr>
<td>AIAA American Institute of Aeronautics and Astronautics</td>
</tr>
<tr>
<td>APCP Ammonium Perchlorate Composite Propellant</td>
</tr>
<tr>
<td>APRS Automatic Packet Reporting System</td>
</tr>
<tr>
<td>CFR Code of Federal Regulations</td>
</tr>
<tr>
<td>CONOPS Concept of Operations</td>
</tr>
<tr>
<td>COTS Commercial Off-the-Shelf</td>
</tr>
<tr>
<td>ESRA Experimental Sounding Rocket Association</td>
</tr>
<tr>
<td>FAA Federal Aviation Administration</td>
</tr>
<tr>
<td>GPS Global Positioning System</td>
</tr>
<tr>
<td>HPR High Power Rocket or Rocketry</td>
</tr>
<tr>
<td>IREC Intercollegiate Rocket Engineering Competition</td>
</tr>
<tr>
<td>ITAR International Traffic in Arms Regulations</td>
</tr>
<tr>
<td>LOX Liquid Oxygen</td>
</tr>
<tr>
<td>NAR National Association of Rocketry</td>
</tr>
<tr>
<td>NMSA New Mexico Spaceport Authority; aka Spaceport America</td>
</tr>
<tr>
<td>OML Outer Mold Line</td>
</tr>
<tr>
<td>PII Personally Identifiable Information</td>
</tr>
<tr>
<td>SAC Spaceport America Cup</td>
</tr>
<tr>
<td>SDL Space Dynamics Laboratory</td>
</tr>
<tr>
<td>SRAD Student Researched & Developed</td>
</tr>
<tr>
<td>STEM Science, Technology, Engineering, and Mathematics</td>
</tr>
<tr>
<td>TBD To Be Determined</td>
</tr>
<tr>
<td>TBR</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>TRA</td>
</tr>
</tbody>
</table>

TERMS

Amateur Rocket

14 CFR, Part 1, 1.1 defines an amateur rocket as an unmanned rocket that is "propelled by a motor, or motors having a combined total impulse of 889,600 Newton-seconds (200,000 pound-seconds) or less, and cannot reach an altitude greater than 150 kilometers (93.2 statute miles) above the earth's surface”.

Excessive damage is defined as any damage to the point that, if the systems intended consumables were replenished, it could not be launched again safely. Intended Consumables refers to those items which are - within reason - expected to be serviced/replaced following a nominal mission (e.g. propellants, pressurizing gasses, energetic devices), and may be extended to include replacement of damaged fins specifically designed for easy, rapid replacement.

FAA Class 2 Amateur Rocket

14 CFR, Part 101, Subpart C, 101.22 defines a Class 2 Amateur Rocket (aka High Power Rocket) as "an amateur rocket other than a model rocket that is propelled by a motor or motors having a combined total impulse of 40,960 Newton-seconds (9,208 pound-seconds) or less.”

For the purposes of the Spaceport America Cup: IREC, the event organizers consider ammonium perchlorate composite propellant (APCP), potassium nitrate and sugar (aka "rocket candy"), nitrous oxide, liquid oxygen (LOX), hydrogen peroxide, kerosene, propane and similar, as non-toxic propellants. Toxic propellants are defined as requiring breathing apparatus, special storage and transport infrastructure, extensive personal protective equipment, etc.

Non-toxic Propellants

The electronic version is the official, approved document.
Verify this is the correct version before use.